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Topic Discovery via Convex Polytopic Model:
A Case Study with Small Corpora
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Abstract—Topic discovery is an important problem in text
processing. Topic modeling approaches such as latent Dirichlet
allocation (LDA) has been applied quite successfully in extracting
topics. However, there still exists several directions for further
improvement. Short texts (e.g. tweets and news titles) present
the problem of data sparsity for LDA. Second, there needs to be
greater transparency in the process of topic discovery in order
to enhance interpretability for humans. Third, the robustness of
the model needs to be further enhanced to avoid sensitivity to the
choice of hyper-parameters. In this paper, we propose a novel
geometric approach based on convex polytopic model (CPM)
which can discover representative and interpretable topical
features from the given corpus. By embedding all documents
into a low-dimensional affine subspace, we show that the topics
can be obtained geometrically as the vertices of a compact
polytope which encloses all the embedded documents. We further
interpret the features acquired as topics and use them to obtain
a convex polytopic document representation for every document.
We studied the properties of CPM by two small corpora of
short texts. Results reveal that the proposed CPM can discover
interpretable topics even for short texts. We also discover that
the geometric nature of CPM enhances model transparency and
topic interpretability, as well as robustness to hyper-parameter
selection.

Index Terms—Topic discovery, document categorization, text
representation, convex polytope.

I. INTRODUCTION

D ISCOVERING topics from a collection of documents is
a challenging task in information extraction. The goal of

this task is to automatically discover the most representative
semantic features as topics which capture the gist of the
documents such that they are interpretable for humans.

Various topic discovery algorithms have been proposed in
recent decades. For example, Latent Semantic Analysis (LSA)
extracts the concepts as semantic features of the documents
by projecting them onto a low-dimensional latent semantic
space using singular value decomposition (SVD) of the term-
document matrix [1]. Probabilistic topic models such as Latent
Dirichlet Allocation (LDA) [2] are generative models which
extract topics by assuming that each document is generated
by a mixture of topics where the topics are represented by the
distribution of words.

However, the existing approaches have several limitations.
For example, the dimensions of the latent space in LSA may
be difficult to interpret, as they represent statistical features
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rather than human-interpretable features. The performance of
LDA is easily affected by data sparsity in short documents
[3, 4]. Besides, the model is not transparent as the inference
process does not explicitly show how the topics are discovered.
Furthermore, it is sensitive to the choices of hyper-parameters
and the algorithm may give different results in several runs,
which implies a need to enhance robustness.

In this paper, we propose a novel topic discovery ap-
proach based on convex polytopic model (CPM) which can
break through the limitations of the existing methods. CPM
transforms the task into a geometric problem by embedding
the documents in the corpus into a low-dimensional affine
subspace, and then generating a compact convex polytope
to enclose the embedded documents. We define the vertices
of the polytope as topics of the corpus and introduce two
new interpretations of the topics based on the geometric
properties of the vertices. First, a topic can be represented
by the coordinates of the vertices where every dimension
represents the relative strength of the associating word within
the topic. If the vertex corresponds to one of the embedded
documents, the topic can further be defined by the document
text which can be directly understood by humans. We refer
such document as the constituent document. This interpretation
can serve as a supplement to the first one and thus improve
topic interpretability. In addition, CPM allows every document
in the corpus to be represented by the convex combination of
these topics. We begin our investigation by studying CPM with
a small corpus, which enables us to easily visualize the process
of topic discovery, providing a transparent topic model. We
also show that CPM outperforms the existing methods such as
LSA and LDA in terms of model robustness and transparency,
as well as topic interpretability.

The contribution of this paper is three-fold: first, we propose
a novel topic discovery approach that is applicable in short
texts and small corpora where topic models such as LDA
tends to fall short. Second, we provide a new perspective
to topic interpretability in addition to the conventional vec-
tor representation by interpreting the text of the constituent
document as the representative of a topic. Third, we develop a
new geometric analysis method for topic models using small
corpora which illustrates how the model transparency can be
improved to allow users to understand the topic discovery
process via visualization.

The rest of the paper is organized as follows. Section II
gives the detailed formulation of the proposed CPM. Section
III demonstrates the efficacy of CPM by testing on corpora
with and without clear categorization. Section IV concludes
the paper and discusses some possible future work.
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II. CONVEX POLYTOPIC MODEL
This section presents the detailed formulation of the pro-

posed CPM and discusses how to interpret the semantic
meaning from its geometric formulation.

A. Geometric Formulation
The CPM consists of two steps. First, all documents are em-

bedded in a low-dimensional affine subspace using principal
component analysis (PCA) and each document is represented
by a point. Second, a compact convex polytope is generated
that encloses all the embedded document as points.
Step 1: Embedding documents into low-dimensional affine
subspace

Given a corpus of N documents, preprocess it by removing
the stopwords and build a vocabulary. Let the vocabulary
size be M . The corpus can then be transformed into a sum-
normalized term-document matrix X ∈ RM×N where the
entry xij is the i-th term count divided by the total counts
of all terms in document the j-th document. Let X̄ ∈ RM×N

be the matrix with each column equal the average of all the
columns of X.

Then, we aim to find the closest low-dimensional subspace
for the documents represented by (X−X̄), which can be done
using SVD. Assume that the dimension of the subspace is
R, where an orthonormal basis U ∈ RM×R can be obtained
by keeping the first R eigenvectors of (X − X̄)(X − X̄)T.
The documents can then be projected onto the R-dimensional
document subspace spanned by the basis U. Let the projected
documents be the document point set {pi}Ni=1, as the columns
of P ∈ RM×N represented by:

P = X̄ + UUT(X− X̄). (1)

Note that the columns of P are still sum-to-one and hence the
document points are on the sum-to-one hyperplane.

The above procedure is equivalent to PCA, where the
original document points in X are fitted into an R-dimensional
ellipsoid, where the axes of the ellipsoid are the principal
components. Note that the principal component corresponds
to the direction where the data has the largest variance.
Hence, the projected points keep the most distinguishable
features. Although LSA also utilizes SVD for finding the
latent semantic space, it is fundamentally different from the
proposed approach. In traditional LSA, the term-document
matrix is not sum-normalized nor subtracted by the average,
and hence it is not finding the affine document subspace. The
key difference between the latent semantic space and the affine
document subspace is that the former measures the difference
of documents by the included angle of their document vectors,
while the latter measures with their spatial distance. We will
show that such property of affine document subspace is useful
for finding meaningful features for the corpus of documents.
Step 2: Enclose the embedded document points by a
compact polytope

The second step of CPM is to extract meaningful features
as topics. As the distance of points in document subspace
measures the difference between the documents, we assume
that the extremes of the document point set have the least
similarity and hence can represent topical features for the

corpus. Finding the extreme points is equivalent to finding
the convex polytope with the minimum volume that encloses
all the points, where the vertices are the extreme points. We
define the vertices as the representative topics for the corpus.
Note that all document points can thus be represented by
the convex combinations of the vertices, and the minimum
volume enclosing convex polytope always exists and is unique
under the permutation of vertex labels for a finite point set.
We refer this type of polytope as the normal (NO)-type,
where all the vertices are within the point sets [5]. The
documents associated with the vertices are thus referred as
constituent documents. Hence, the features represented by the
vertices are interpretable as human can understand the text
of the consitituent documents directly. This is different from
the existing topic discovery approaches where the topics are
represented either by a vector or a distribution of words. The
NO-type polytope defines the topics by documents directly.

There are several algorithms that can generate NO-type
polytope, under the class of convex hull algorithms. For
example, Quickhull [6] is a popular divide-and-conquer-based
convex hull algorithm. For more details about the algorithm,
please refer to [6].

For the NO-type polytope, the number of vertices may be
as large as the number of documents N . However, in some
circumstances, we prefer to extract a fixed number of features
as topics, denoted by K, which is less than N . The problem
can thus be formulated as finding the K-vertex enclosing
convex polytope with the minimum volume. Assuming that
the dimension of the document subspace is R = K − 1, it is
equivalent to finding the minimum volume simplex (MVS) that
contains the document point set. We refer this as the MVS-
type polytope. Note that the vertices may no longer be in the
document point set, hence a new method is needed to interpret
the vertices and will be discussed in the coming subsection.

We define a special type of MVS-type polytope called close-
to-normal (CNO)-type, where at least one of the vertices are in
the document point set. Those vertices can then be interpreted
just like in the NO-type.

B. Convex Polytopic Representation
The convex polytopic representation of the document point

pi is defined as the convex combinations of vj :

pi =

K∑
j=1

wijvj , (2)

where wij ≥ 0 and
∑K

j=1 wij = 1, for i = 1, . . . , N .
The constraint non-negative and sum-to-one is the convexity
condition. Equation (2) represents that all points {pi}Ni=1 are
enclosed in a convex polytope with vertices {vj ∈ RM}Kj=1.
(2) can be written in matrix form:

P = VA, (3)

where {vj}Kj=1 form the columns of V ∈ RM×K and A ∈
RK×N with entries aij = wji. Note that all columns of A,
denoted by a1, . . . ,aN , are sum-to-one and non-negative.
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C. Minimum Volume Simplex Analysis
Consider R = K − 1 and the matrix P is known, we apply

the algorithm originally proposed by Li et al. in [7, 8] to find
the MVS. To formulate the MVS problem into an optimization
problem, we first rewrite (3) into the following form:

P = VA s.t. A � 0 and 1T
KA = 1TN . (4)

It is known that the volume of simplex defined by the
origin and the columns of Ṽ is

∣∣det(Ṽ)
∣∣, where det(Ṽ) is the

determinant of Ṽ. As the distance from the origin to the sum-
to-one hyperplane is fixed, minimizing the volume of simplex
that contains all document points is equivalent to minimizing
the volume of simplex defined by the origin and the columns
of Ṽ, the minimal volume simplex problem can be formulated
as follows:

Ṽ
∗

= arg min
Ṽ

∣∣det(Ṽ)
∣∣

s.t. Ṽ
−1

P̃ � 0 and 1TKṼ
−1

P̃ = 1TN ,

(5)

where P̃ and Ṽ are the projected version of P and V,
respectively.

Li et al. [7] proposed a sequential quadratic programming
(SQP) algorithm to solve (5). Then, the vertices V can be
obtained. As each vertex is also on the sum-to-one hyperplane,
its entry value can be interpreted as the strength of the corre-
sponding term in the topic. Hence, this gives an alternative
interpretation of the vertices when they are not within the
document point set.

III. EXPERIMENTS

In this section, we investigate the properties of the proposed
CPM using two different corpora. Both corpora are chosen to
be small so that it is possible to easily illustrate how the model
works by direct examination, as we analyze the characteristics
of every step in the method.

We implemented the algorithms of LSA and the proposed
CPM in Matlab. The Qhull algorithm [6] is applied to generate
the NO-type polytope. The TP Tool [9] is applied for gener-
ating the CNO-type polytope. The algorithm for finding the
MVS-type polytope is based on the minimum volume simplex
analysis proposed by Li et al. [7, 8]. The results of LDA is
computed by a Python toolbox named Gensim [10].

A. Experiment 1 – Small Corpus with Clear Categorization
The first experiment uses a corpus that contains 10 short

documents which are the titles of papers categorized by
two research fields: human-computer interface and graphs,
respectively (see Table I). We have borrowed the examples
from [1] and further extended them slightly, by adding a
document (D10 in Table I) about graphs. Note that the two
categories are expected to have almost no intersection, i.e., the
documents corresponding to different categories should have
no common keywords. We aim to discover the topical features
that characterized the two categories from the unlabeled corpus
using the CPM and show that the features extracted by CPM
is more interpretable than that of LSA.

Table I: The first corpus used in Experiment 1. Words occur-
ring in more than one document are italicized. D4 and D7
are in bold as they are automatically chosen by the NO-type
polytope to be the endpoints, which signify key constituent
documents.

IDs Documents
D1 Human machine interface for Lab ABC computer applications
D2 A survey of user opinion of computer system response time
D3 The EPS user interface management system
D4 System and human system engineering testing of EPS
D5 Relation of user-perceived response time to error measurement
D6 The generation of random, binary, unordered trees
D7 The intersection graph of paths in trees
D8 Graph minors IV: Widths of trees and well-quasi-ordering
D9 Graph minors: A survey
D10 Fast random graph generation

Table I shows the 10 documents in the corpus of Experiment
1. D1-D5 belong to humans-computer interface, and D6-D10
belong to the graphs.

We generated the term-document matrix as in [1], where
the stopwords such as the, and are removed, and only the
terms occurring in more than one document are considered.
Then, we sum-normalized each column of the term-document
matrix representing the input of the documents and applied
PCA to project the columns to a 1-D subspace as the number
of expected topics is 2.

Figure 1 shows the NO-type convex polytope, which is a
line segment. Note that for the 1-D subspace, the NO-type
polytope always exists and has the minimal volume, i.e., is also
of MVS-type. V1 and V2 are defined here as the endpoints of
the line. As shown in Figure 1, the points D4 and D7 coincide
with V1 and V2, respectively. Hence, the two documents,
D4 and D7, are the constituent documents which can serve
to illustrate the topic features to enhance interpretability. By
observing the text of D4, the words system and human are
the most common words in among D1-D5, and D4 has the
largest proportion of these two words. It shows that the NO-
type polytope tends to select the document with the largest
proportion of the most common words as the vertex. Similar
phenomenon is observed for D7, where the words graphs and
trees are the most common words among D6-D10 and D7 has
the largest proportion of these words.

Another way to interpret the topics is to use the coordinates
of the vertices with respect to the original space, represented
by the set of vectors {vj}Kj=1 in Equation (2). The i-th entry
of the vector vj corresponds to the relative strength of the i-th
word in the vocabulary to the j-th topic (represented by the j-
vertex). Table II shows the values of v1 and v2 in descending
order, where the top words of v1 and v1 (words in bold)

Figure 1: The NO-type convex polytope in one dimension (and
hence a line segment) of Experiment 1. Each blue cross is a
point that represents a document. V1 and V2 are the endpoints
represented by the red circles.
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Table II: The values of v1 and v2 from Equation (2) in
descending order of word strength for NO-type in Experiment
1. Words in bold are the top words that can help interpret the
topics as related to human-computer interaction and graphs.

v1 v2

system 0.21027 graph 0.40153
user 0.15735 trees 0.32878
human 0.12796 minors 0.16125
interface 0.12507 generation 0.14036
eps 0.11731 random 0.14036
computer 0.10072 survey 0.06329
response 0.10014 response -0.01487
time 0.10014 time -0.01487
survey 0.03973 computer -0.01563
generation 0.00971 interface -0.02801
random 0.00971 user -0.03155
minors -0.00643 human -0.03175
graph -0.0444 eps -0.03709
trees -0.04727 system -0.06179

are highly related to the topics of human-computer interac-
tion and graphs, respectively. This provides a keyword-based
approach to interpret the topics. The constituent documents
can be viewed as the representative instances of v1 and v2

as seen in D4 where the key words of v1 is in the largest
proportion among the documents. Therefore, CPM provides
two perspectives to interpret the vertices as topical features.

The combination coefficients for every document which are
the columns of matrix A in Equation (3) are shown in Figure
2 in the form of a stacked bar chart. It is found that D1-
D5 have higher proportions in topic associated to V1, and
the remaining documents are closer to V2. This is consistent
to our expectation where the documents can be respectively
categorized into two classes.

We provide the results of LSA for comparisons. LSA
approximates the term-document matrix with a low-rank ma-
trix M = UΣVT. Here we consider the rank of M to
be 2 because the corpus consists of documents from two
categories. The columns of matrix U are orthonormal and can
be interpreted as the vector representation of the underlying
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Figure 2: The blue and orange bars represent the combination
coefficients as the columns of A in Equation (3) for the
documents with respect to V1 and V2, respectively.

Table III: The LSA concept vectors u1 and u2 in descending
order of word strength in Experiment 1. We make the same
set of words to bold as in Table II

u1 u2

system 0.64381 graph 0.65189
user 0.40329 trees 0.47957
eps 0.30043 minors 0.3411
response 0.26491 generation 0.30548
time 0.26491 random 0.30548
computer 0.24034 survey 0.16222
human 0.22106 response 0.01464
survey 0.20709 time 0.01464
interface 0.19739 computer 0.00154
graph 0.04597 user -0.01102
minors 0.03456 interface -0.03638
trees 0.01767 human -0.04779
generation 0.00888 eps -0.06272
random 0.00888 system -0.08751

concepts. The values of the vector indicate the strength of
association of the terms with the corresponding concept. Table
III displays the concept vectors u1 and u2 in descending
order of strength. Note that unlike in CPM, the term human,
computer and interface have relative lower strengths in u1

which is more difficult to interpret the concept as related to
human-computer interaction comparing with CPM.

B. Experiment 2 – Small Corpus without Clear Categorization
The second corpus consists of 12 short documents among

three research topics with no clear categorization, i.e., some
documents contain more than one topic (see Table IV). The
three topics include machine translation, speech recognition
and neural networks. It is well-known that machine translation
and speech recognition are related respectively to natural
language processing and speech processing, which are two
different fields. However, there are some recent publications
about applying neural networks to the both fields. We chose
the titles of some of those publications in the corpus, and
added some documents that are purely related to neural
networks. We attempt to show that CPM can extract the topics
which are more interpretable than the conventional methods
such as LSA and LDA.

Table IV shows the 12 documents in the corpus of Experi-
ment 2. D1-D4 are related to speech recognition, and D5-D8
are related to machine translation. D9-D12 are about neural
networks but not speech recognition or machine translation.
Note that D1, D2, D5 and D6 are also related to neural
networks. Thus, they cannot be purely classified to a specific
category.

We generated the term-document matrix like that in Exper-
iment 1. Then, we sum-normalized each column of the term-
document matrix and applied PCA to project the columns to a
2-D subspace. Figure 3 displays the NO-type convex polytope
in 2-D subspace which has 5 vertices V1-V5 corresponding
to D3, D8, D5, D9 and D10, respectively. Observing from the
text of the documents, it is obvious that V1 (D3) corresponds
to the pure topic of speech recognition. Similarly, V2 (D8)
is associated to pure topic of machine translation. Note that
V5 (D10) is a document related to neural networks without
the term neural but with convolutional. It is well-known that
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Table IV: Corpus of Experiment 2. Words occurring in more
than one documents are italicized. The words neural and
networks are in bold.

IDs Documents
D1 Speech recognition with deep recurrent neural networks
D2 Deep neural networks for acoustic modeling in speech recognition
D3 Fundamentals of speech recognition
D4 Self-organized language modeling for speech recognition
D5 Neural machine translation by jointly learning to align and

translate
D6 Effective approach to attention-based neural machine translation
D7 A statistical approach to machine translation
D8 Minimum error rate training in statistical machine translation
D9 Sequence to sequence learning with neural networks
D10 Visualizing and understanding convolutional networks
D11 Deep learning in neural networks: an overview
D12 Learning semantic representations using convolutional neural

networks for web search

convolutional neural networks is a specific type of neural
networks. As convolutional appears in two documents (D10
and D12), it is reasonable for CPM to consider D10 as a
topical feature, where the proportion of convolutional is the
largest. V3 (D5) is related to the machine translation based
on neural networks approach. V4 (D9) is about pure neural
networks without the term convolutional. V3 and V4 are less
distinct cf. V1, V2 and V5, and hence can be considered as
sub-topics.

Figure 4 displays the MVS-type convex polytope. In 2-D
subspace, its simplex must have three vertices only. Note that
the generated MVS-type has a vertex V1 locating exactly at
D3, which also makes it a CNO-type polytope. Comparing
with the NO-type, V2 in MVS-type is an extension along the
(D3-D9)-direction that eliminates the vertex V3 in the NO-
type. Similarly, V3 in MVS-type extends along the (D3-D10)-
direction to eliminate the vertex V4 in the NO-type. Figure 5
shows the convex combination coefficients in A of Equation
(3) of MVS-type polytope. The topics represented by V1, V2
and V3 dominate in documents D1-D4, D5-D8 and D9-D12,
respectively.

Table V shows the the coordinates of V1-V3, respectively
represented by v1, v2 and v3, in descending order of values.

Figure 3: The NO-type convex polytope in 2-D subspace of
Experiment 2. V1-V5 are the vertices represented by the red
circles.

Figure 4: The MVS-type convex polytope in 2-D subspace of
Experiment 2. V1-V3 are the vertices represented by the red
circles.
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The top two words indicates the corresponding topics that is
consistent with human expectation.

We compared the results of CPM with LSA. Table VI
presents the LSA concept vector C1-C3 in descending order
of absolute word strength. Note that the word convolutional
is a top word of the topic related to neural networks (V3)
in MVS-type CPM but not in that of LSA (C1). This serves
to illustrate how CPM can discover more interpretable topics
than LSA.

Next, we compared CPM with LDA, where topics are
represented as word distributions. We set the number to topics
to be 3. Note that unlike in LSA and CPM, we included the
terms occurring only once in the corpus as the input. Table
VII presents the top 10 words for the 3 obtained topics T1-
T3. It is obvious that T1 and T3 are about machine translation
and neural networks, respectively. However, both machine
translation and speech recognition share similar weights, that
makes T2 hard to interpret.

Table VIII shows the topic proportions for all documents.
As T1 and T2 have overlapping on machine translation, this
causes D4-D5 and D6-D7 have different prominent topics.
D10 is expected to belong to pure neural networks, but T2
dominates in D10 because the terms networks, visualizing and
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Table V: The CPM representations of v1, v2 and v3 in
descending order of word strength in Experiment 2.

v1 v2 v3

speech 0.4473 machine 0.3340 networks 0.4090
recognition 0.4473 translation 0.3340 neural 0.2558
modeling 0.1666 statistical 0.2075 convolutional 0.2270
deep 0.0638 approach 0.1539 learning 0.2230
neural 0.0088 neural 0.1079 deep 0.0933
networks 0.0006 learning 0.0455 modeling -0.0012
statistical -0.0004 modeling -0.0031 speech -0.0188
approach -0.0031 deep -0.0078 recognition -0.0188
machine -0.0171 speech -0.0250 approach -0.0240
translation -0.0171 recognition -0.0250 machine -0.0458
convolutional -0.0398 convolutional -0.0544 translation -0.0458
learning -0.0570 networks -0.0676 statistical -0.0536

Table VI: The LSA concept vectors of u1, u2 and u3 in
descending order of word strength in Experiment 2.

u1 u2 u3

neural 0.5706 machine 0.5425 speech 0.4650
networks 0.4875 translation 0.5425 recognition 0.4650
learning 0.3048 approach 0.2926 modeling 0.2692
deep 0.3036 statistical 0.2813 machine 0.2067
speech 0.2830 learning 0.1256 translation 0.2067
recognition 0.2830 neural 0.1101 statistical 0.1839
machine 0.1572 convolutional -0.0114 approach 0.1529
translation 0.1572 modeling -0.1470 deep 0.0590
modeling 0.1495 deep -0.1626 neural -0.1958
convolutional 0.1109 networks -0.1677 convolutional -0.2240
approach 0.0744 speech -0.2667 networks -0.2886
statistical 0.0422 recognition -0.2667 learning -0.4208

understanding are in the top words of T2. The reason for
the unsatisfactory performance of LDA may also deal to the
small size of the corpus. It is well-known that LDA does not
perform well in short texts [3,4]. In the experiment above, we
assumed the topic proportions follows a symmetric Dirich-
let distribution, which is implicitly defined in the selected
hyper-parameters. However, this presumption affects the topic
proportions of the document. For example, one would expect
D1 has similar ratio between speech recognition and neural
networks. However, T3 dominates D1 with proportion about
90% in the LDA, while in CPM the ratio between speech
recognition and neural networks is about 1 : 1 (see Figure 5).
Hence, CPM is more robust than CPM in terms of selection
of hyper-parameters.

IV. CONCLUSIONS
This paper presents a novel topic discovery approach that

embeds documents in low-dimensional affine subspace and
generates a compact convex polytope to enclose all the embed-
ded documents. We show that the resulting topics as the ver-
tices of the polytope are more representative and interpretable
than the existing methods on two small corpora with short
texts. The proposed model has several advantages. First, it is
transparent as the process can be visualized and understood
in terms of geometry. This enhances the interpretability of
the model which is useful to justify the results. Second,
it is robust as the NO-type polytope always exists and is
unique, avoiding the selection of hyper-parameters. Third, the
resulting topics are consistent with human expectation even in
corpus without clear categorization, which enhance the topic
interpretability. Thus, this model can be conceivably applied
to complex corpora where the topics are highly overlapped.
In future work, we will test the scalability of CPM with

Table VII: The top 10 words in LDA topics of T1, T2 and T3
in Experiment 2.

T1 T2 T3
machine 0.0873 translation 0.0662 neural 0.1249
translation 0.0872 machine 0.0661 networks 0.1108
statistical 0.0582 recognition 0.0655 learning 0.0745
training 0.0569 speech 0.0635 deep 0.0692
rate 0.0568 networks 0.0446 speech 0.0562
error 0.0566 approach 0.0425 recognition 0.0549
minimum 0.0564 visualizing 0.0421 sequence 0.0486
attention-based 0.0468 statistical 0.0420 modeling 0.0348
approach 0.0462 understanding 0.0416 convolutional 0.0283
neural 0.0444 fundamentals 0.0416 acoustic 0.0280

Table VIII: The LDA topic proportions for the documents in
Experiment 2.

T1 T2 T3
D1 0.0483 0.0515 0.9000
D2 0.0422 0.0454 0.9120
D3 0.0842 0.8220 0.0939
D4 0.0564 0.8790 0.0650
D5 0.0464 0.8760 0.0780
D6 0.8900 0.0528 0.0575
D7 0.8520 0.0797 0.0679
D8 0.9140 0.0439 0.0420
D9 0.0562 0.0571 0.8870
D10 0.0677 0.8460 0.0868
D11 0.0563 0.0571 0.8870
D12 0.0377 0.0390 0.9230

large real-world corpora. Moreover, we will investigate the
possibility to incorporate tensor product to CPM as inspired by
the tensor product model transformation in polytopic model-
based control [5].
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